An Approach to Estimate Global Biomass Burning Emissions of Organic and Black Carbon from Modis Fire Radiative Power

نویسنده

  • Evan A. Ellicott
چکیده

Title of Dissertation: AN APPROACH TO ESTIMATE GLOBAL BIOMASS BURNING EMISSIONS OF ORGANIC AND BLACK CARBON FROM MODIS FIRE RADIATIVE POWER Evan A. Ellicott, Doctor of Philosophy, 2009 Directed By: Professor Chris O. Justice Department of Geography Biomass burning is an important global phenomenon affecting atmospheric composition with significant implications for climatic forcing. Wildland fire is the main global source of fine primary carbonaceous aerosols in the form of organic carbon (OC) and black carbon (BC), but uncertainty in aerosol emission estimates from biomass burning is still rather large. Application of satellite based measures of fire radiative power (FRP) has been demonstrated to offer an alternative approach to estimate biomass consumed with the potential to estimate the associated emissions from fires. To date, though, no study has derived integrated FRP (referred to as fire radiative energy or FRE) at a global scale, in part due to limitations in temporal or spatial resolution of satellite sensors. The main objective of this research was to quantify global biomass burning emissions of organic and black carbon aerosols and the corresponding effect on planetary radiative forcing. The approach is based on the geophysical relationship between the flux of FRE emitted, biomass consumed, and aerosol emissions. Aqua and Terra MODIS observations were used to estimate FRE using a simple model to parameterize the fire diurnal cycle based on the long term ratio between Terra and Aqua MODIS FRP and cases of diurnal satellite measurements of FRP made by the geostationary sensor SEVIRI, precessing sensor VIRS, and high latitude (and thus high overpass frequency) observations by MODIS. Investigation of the atmospheric attenuation of MODIS channels using a parametric model based on the MODTRAN radiative transfer model indicates a small bias in FRE estimates which was accounted for. Accuracy assessment shows that the FRE estimates are precise (R = 0.85), but may be underestimated. Global estimates of FRE show that Africa and South America dominate biomass burning, accounting for nearly 70% of the annual FRE generated. The relationship between FRE and OCBC estimates made with a new MODISderived inversion product of daily integrated biomass burning aerosol emissions was explored. The slope of the relationship within each of several biomes yielded a FREbased emission factor. The biome specific emission factors and FRE monthly data were used to estimate OCBC emissions from fires on a global basis for 2001 to 2007. The annual average was 17.23 Tg which was comparable to previously published values, but slightly lower. The result in terms of global radiative forcing suggests a cooling effect at both the top-of-atmosphere (TOA) and surface approaching almost 0.5 K which implies that biomass burning aerosols could dampen the warming effect of green house gas emissions. An error budget was developed to explore the sources and total uncertainty in the OCBC estimation. The results yielded an uncertainty value of 58% with specific components of the process warranting future consideration and improvement. The uncertainty estimate does not demonstrate a significant improvement over current methods to estimate biomass burning aerosols, but given the simplicity of the approach should allow for refinements to be made with relative ease. AN APPROACH TO ESTIMATE GLOBAL BIOMASS BURNING EMISSIONS OF ORGANIC AND BLACK CARBON FROM MODIS FIRE RADIATIVE POWER

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Near-Real-Time Estimates of Biomass Burning Emissions using Satellite Active Fire Detections

We present a new technique for generating daily global estimates of biomass burning emissions suitable for use in models forecasting atmospheric chemical composition and air quality. We combine ecosystem-dependent carbon fuel databases, fire weather severity estimates, and near-real-time satellite fire detections from the MODIS instruments to estimate the amount of carbon released from active f...

متن کامل

Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power

The Global Fire Assimilation System (GFASv1.0) calculates biomass burning emissions by assimilating Fire Radiative Power (FRP) observations from the MODIS instruments onboard the Terra and Aqua satellites. It corrects for gaps in the observations, which are mostly due to cloud cover, and filters spurious FRP observations of volcanoes, gas flares and other industrial activity. The combustion rat...

متن کامل

Estimating biomass consumed from fire using MODIS FRE

[1] Biomass burning is an important global phenomenon impacting atmospheric composition. Application of satellite based measures of fire radiative energy (FRE) has been shown to be effective for estimating biomass consumed, which can then be used to estimate gas and aerosol emissions. However, application of FRE has been limited in both temporal and spatial scale. In this paper we offer a metho...

متن کامل

Daily and 3‐hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide

[1] Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic‐ and diurnal‐scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions...

متن کامل

Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

Open-burning fires play an important role in the earth’s climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009